سازه FRP در چه مواردی کاربرد دارد؟

140725_panorama_moschee
برخی از موارد کاربرد FRP به اختصار در زیر شمرده است:
  • افزایش ظرفیت باربری و شکل پذیری ستون‌ها، تیرها، دال ها و اتصالات بتن آرمه
  • تقویت مخازن فولادی و بتنی
  • تقویت سازه‌های ساحلی و دریایی
  • تقویت سازه‌های مقاوم در برابر انفجار
  • تقویت تیر و ستون‌های چوبی
  • تقویت دودکش‌های بتن آرمه با مصالح بنایی
  • تقویت دیوارهای بتن آرمه
  • تقویت دیوار تونل‌ها
  • تقویت لوله‌های بتنی یا فولادی
  • تقویت دیوارهای آجری و مصالح سنتی
  • ساخت دیوارهای ساحلی
  • سقف‌های پشت بام‌های صنعتی
  • سیستم دال کف در محیط‌های خورنده شیمیایی
  • مرمت و تقویت سازه‌های مهمی چون بیمارستان‌ها آثار باستانی و غیره

ادامه مطلب

دوام کامپوزیت‌های FRP (بخش دوم)

1j2a5165

تأثیرات حرارتی – رطوبتی

درجه حرارت، نقش تعیین‌کننده‌ای در مکانیزم جذب آب کامپوزیت‌ها و تأثیرات متعاقب برگشت‌ناپذیر آن بازی می‌کند. درجه حرارت، بر توزیع آب، میزان آن و سرعت جذب آن، تأثیر می‌گذارد. با افزایش دما، مقدار و سرعت جذب آب سریعاً افزایش می‌یابد. تحقیقات نشان داده است که ضایعات ناشی از قرار دادن کامپوزیت، در آب جوش به مدت چند ساعت، معادل جداشدن اجزاء کامپوزیت، و ترک‌خوردگی آن در اثر قرار گرفتن آن در آب با دمای 50  به مدت 200 روز می‌باشد. در دمای معمولی اطاق، نمونه‌های کامپوزیت هیچگونه خرابی و آسیبی را بروز نداده‌اند. چنین مشاهداتی به توسعه تکنیک‌هایی برای آزمایشات تسریع شده پیرشدگی کامپوزیت‌ها منجر شده است.  

محیط قلیایی

در کاربرد کامپوزیت‌های با الیاف شیشه در محیط قلیایی، ضروری است که از الیاف شیشه با مقاومت بالای قلیایی استفاده نمود؛ زیرا محلول قلیایی با الیاف شیشه واکنش داده و ژل انبساطی سیلیکا تولید می‌کنند. این نکته به خصوص در کاربرد کامپوزیت‌های با الیاف شیشه به عنوان میلگردهای مسلح کننده بسیار حائز اهمیت می‌باشد. امروزه علاقه به استفاده از میلگردهای FRP از جنس شیشه در رویه‌های بتنی، به عنوان جانشین میلگردهای فولادی که با نمک‌های یخ زدا خورده می‌شوند، و نیز در سازه‌های در مجاورت آب افزایش یافته است. با این وجود در فرآیند هیدراسیون سیمان، محلول آب با قلیائیت بالا (pH>12) ایجاد می‌شود. این محلول قلیایی شدید، می‌تواند بر الیاف شیشه تأثیر گذاشته و دوام میلگردهای اف ار پی ساخته شده با الیاف شیشه را کاهش دهد. الیاف شیشه از جنس E-glass که اکثراً ارزان بوده و به کار گرفته می‌شوند، ممکن است مقاومت کافی در مقابل حمله قلیایی‌ها را نداشته باشند. استفاده از رزین وینیل استر با ایجاد یک مانع مؤثر، تا حدودی حمله قلیایی‌ها را کاهش می‌دهد. مقاومت در مقابل حمله قلیایی‌ها را می‌توان با طراحی عضو سازه‌ای برای تحمل سطح تنش‌های کمتر، بهبود داد. همچنین می‌توان برای بهبود دوام، از الیاف شیشه با مقاومت بسیار خوب در مقابل قلیا استفاده نمود. شایان ذکر است که FRP های ساخته شده از الیاف کربن و آرامید، مطلقاً در مقابل محیط‌های قلیایی از خود ضعفی نشان نمی‌دهند.  

تأثیر دمای پائین

تغییرات شدید دما بر کامپوزیت‌ها چندین اثر عمده به دنبال دارد. اکثر مواد با افزایش دما انبساط پیدا می‌کنند. در کامپوزیت‌های اف ار پی با ماتریس پلیمری، ضریب انبساط حرارتی ماتریس معمولاً در رتبه بالاتری از ضریب انبساط حرارتی الیاف قرار دارد. کاهش دما ناشی از سرد شدن در ضمن مرحله ساخت و یا شرایط عملکرد کامپوزیت در دمای پایین، باعث انقباض ماتریس خواهد شد. از طرفی انقباض ماتریس با مقاومت الیاف نسبتاً سخت که در مجاورت ماتریس قرار گرفته‌اند، روبرو می‌شود؛ که این مساله تنش‌های پس ماندی را در ریز ساختار ماده به‌جای می‌گذارد. بزرگی تنش‌های پس ماند با اختلاف دما در شرایط عمل‌‌آوری و شرایط عملکرد کامپوزیت متناسب خواهد بود. با این وجود، مگر در محیط فوق‌العاده سرد، تنش‌های پس‌ماند ایجاد شده چندان قابل توجه نخواهد بود. در جایی که تغییر دمای بسیار شدید وجود دارد (مثلاً نواحی نزدیک به قطب شمال و قطب جنوب) ممکن است تنش‌های پس‌ماند بزرگی ایجاد شود که منجر به ایجاد ریزترک در ماده می‌گردد. چنین ریزترکهایی به نوبه خود سختی کامپوزیت را کاهش داده و نفوذپذیری و ورود آب از طریق لایه مرزی ماتریس و الیاف را افزایش می‌دهند و بدین ترتیب در فرآیند تجزیه کامپوزیت شرکت می‌کنند.
تأثیر بسیار مهم دیگر درجه حرارت‌های پایین‌تر، تغییر متناظر در مقاومت و سختی ماتریس است. اکثر مواد رزین ماتریس، با سرد شدن، سخت‌تر و مقاوم‌تر می‌شوند. چنین تغییراتی بر وضعیت شکست اثر می‌گذارد. برای مثال، مشاهده شده است که شکست فشاری نمونه‌های استوانه‌ای کامپوزیت با قطر 38 میلیمتر در دمای 50 نسبت به شکست نمونه‌های مشابه در دمای اتاق با 6/17 درصد افزایش مقاومت فشاری و شکست ترد، همراه است. بدین ترتیب جذب انرژی قبل از شکست در دمای پایین‌تر نسبت به دمای اتاق، بیشتر خواهد بود. این جنبه ویژه از نظر آزاد شدن انرژی زیاد در لحظه شکست، در طراحی کامپوزیت‌هایی که تحت بارهای ضربه‌ای و در دمای پایین قرار می‌گیرند، باید در نظر گرفته شود.
 

تأثیرات سیکل‌های حرارتی در دمای پایین (یخ‌ زدن – ذوب شدن)

به جز در مواردی که کامپوزیت درصد قابل توجهی حفره‌های متصل به یکدیگر پر از آب داشته باشد، تأثیرات یخ‌ زدن و ذوب شدن در محدوده دمایی متداول (30 تا 20-) بر مقاومت، جزئی بوده و حائز اهمیت نیست. کامپوزیت‌های ساخته شده از الیاف‌های شیشه که به طور متداول در دسترس هستند، در حدود 4/0 درصد حفره دارند که اجازه یخ‌زدگی قابل توجهی را نداده و امکان هیچگونه آسیب جدی را فراهم نمی‌کند.
با این وجود، سیکل‌های حرارتی در دمای پایین اثرات دیگری را بر کامپوزیت‌ها می‌گذارد. تنش‌های پس‌ماند در مصالح کامپوزیت، بدلیل تفاوت‌های موجود در ضرائب انبساط حرارتی اجزاء موجود در ریز ساختار ماده، ایجاد می‌شود. در شرایط دمایی بسیار پایین، چنین تنش‌هایی می‌تواند منجر به تشکیل ریزترک‌ها در رزین ماتریس و یا در سطح مشترک رزین و الیاف شود. تغییرات رشد ریزترک در محدوده متداول دمای بهره‌برداری (از  30+  تا 20-)، معمولاً جزئی و یا حاشیه‌ای است؛ با این وجود تحت شرایط سیکل‌های حرارتی شدید، مثلاً بین 60+ تا 60- ، ریزترک‌ها امکان رشد و بهم پیوستن پیدا کرده که منجر به تشکیل ترک در ماتریس و انتشار آن در ماتریس و یا در اطراف سطح مشترک ماتریس و الیاف می‌شود. چنین ترک‌هایی تحت سیکل‌های حرارتی طولانی مدت، از نظر تعداد و اندازه رشد کرده که می‌تواند منجر به زوال سختی و یا زوال سایر خواص وابسته به ماتریس گردد.
همچنین مشاهده شده است که در دمای بسیار پایین، مقاومت کششی کلیه کامپوزیت‌های پلیمری در جهت الیاف، تمایل به کاهش دارد؛ اگر چه مقاومت‌های کششی در سایر جهات از جمله در جهت متعامد، افزایش می‌یابد. چنین نتایجی با سخت شدن ماتریس پلیمری در دمای پایین توجیه می‌شود. از طرفی سیکل‌های حرارتی بین دمای حداکثر و حداقل در زمان طولانی، زوال مقاومت و سختی در کلیه جهات را در پی دارد. چنین تغییراتی در ویژگی و ساختار کامپوزیت ها برای طراحی سازه‌ای در مناطق سرد، مهم تلقی می‌شوند.

تأثیر تشعشع امواج ماوراء بنفش (UV)

تأثیر نور ماوراء بنفش بر ترکیبات پلیمری کاملاً شناخته شده است. تحت تابش طولانی مدت نور خورشید، ممکن است ماتریس سخت و یا بی‌رنگ شود.  این مساله را عموماً می‌توان با بکارگیری یک پوشش مقاوم در مقابل اشعه ماوراء بنفش بر کامپوزیت، برطرف نمود. در همین ارتباط از جمله مسائل بسیار قابل توجه، زوال الیاف پلیمری مسلح کننده نظیر آرامید است. به عنوان مثال برای آرامید ساخته شده از الیاف نازک پس از پنج هفته قرار گرفتن در نور آفتاب فلوریدا، 50 درصد افت مقاومت گزارش شده است. با این وجود این اثر معمولاً سطحی است؛ بنابراین در کامپوزیت‌های ضخیم‌تر، تأثیر این زوال بر خصوصیات سازه‌ای جزئی است. در مواردی که خواص سطحی نیز مهم تلقی شوند، لازم است ملاحظاتی را جهت کاهش ترک‌خوردگی سطحی تحت اشعه خورشید، منظور نمود.

ادامه مطلب

دوام کامپوزیت‌های FRP (بخش اول)

new11
 

عوامل اثر گذار بر دوام الیاف FRP عبارتند از:

  • تغییرات شیمیایی یا فیزیکی ماتریس پلیمر
  • از دست رفتن چسبندگی بین الیاف و ماتریس
  • کاهش مقاومت و سختی الیاف
محیط نقش کاملاً تعیین کننده‌ای در تغییر خواص FRPها دارد. ماتریس و الیاف ممکن است با رطوبت، درجه حرارت، نور خورشید و مشخصأ تشعشعات ماوراء بنفش (UV)، ازن و نیز حضور بعضی از مواد شیمیایی تجزیه کننده نظیر نمک‌ها و قلیا‌ها تحت ثأثیر قرار گیرند. همچنین تغییرات تکراری دما ممکن است به صورت سیکل‌های یخ‌زدن و ذوب شدن، تغییراتی را در ماتریس و الیاف FRP ایجاد کند. از طرفی تحت شرایط بار‌گذاری مکانیکی، بارهای تکراری ممکن است باعث خستگی (Fatigue) شوند. همچنین بارهای وارده در طول زمان مشخص به صورت ثابت، ممکن است مساله خزش (Creep) را به دنبال داشته باشند. مجموعه‌ای از تمام مسائل مطرح شده در بالا، دوام کامپوزیت‌های FRP را تحت تأثیر قرار می‌دهند.  

پیر شدگی فیزیکی ماتریس پلیمر

نقش ماتریس پلیمر و تغییرات آن یکی از جنبه‌های مهمی است که در مساله دوام کامپوزیت‌ها باید در نظر گرفته شود. نقش اولیه ماتریس در کامپوزیت انتقال تنش بین الیاف، محافظت از سطح الیاف در مقابل سائیدگی مکانیکی و ایجاد مانعی در مقابل محیط نامناسب است. همچنین ماتریس نقش به سزائی در انتقال تنش برشی در صفحه کامپوزیت ایفا می‌کند. بنابر این چنانچه ماتریس پلیمر خواص خود را با زمان تغییر دهد؛ باید مورد توجه خاص قرار گیرد. برای کلیه پلیمرها کاملاً طبیعی است که تغییر فوق‌العاده آهسته‌ای در ساختار شیمیایی (مولکولی) خود داشته باشند. این تغییر با محیط و عمدتاً با درجه حرارت و رطوبت کنترل می‌شود. این پروسه پیر‌شدگی (Aging) نام دارد. تأثیرات پیر شدگی در اکثر کامپوزیت‌های ترموست متداول، در مقایسه با کامپوزیت‌های ترموپلاستیک، خفیف‌تر است. در اثر پیر‌شدگی فیزیکی، بعضی از پلیمرها ممکن است سخت‌تر و ترد‌تر شوند؛ نتیجه این مساله تأثیر بر خواص غالب ماتریس از جمله رفتار برشی کامپوزیت خواهد بود. با این وجود در اکثر موارد این تأثیرات بحرانی نیست؛ زیرا نهایتاً روند انتقال بار اصلی از طریق الیاف رخ داده و تأثیرات پیر‌شدگی بر الیاف فوق‌العاده جزئی است.  

تأثیر رطوبت بر FRP

بسیاری از کامپوزیت‌های با ماتریس پلیمری در مجاورت هوای مرطوب و یا محیط‌های مرطوب، با جذب سطحی سریع رطوبت و پخش آن، رطوبت را به خود می‌گیرند. معمولاً درصد رطوبت ابتدا با گذشت زمان افزایش یافته و نهایتاً پس از چندین روز تماس با محیط مرطوب، به نقطه اشباع (تعادل) می‌رسد. زمان رسیدن کامپوزیت به نقطه اشباع به ضخامت کامپوزیت و میزان رطوبت محیط بستگی دارد. خشک کردن کامپوزیت می‌تواند این روند را معکوس کند، اما ممکن است منجر به حصول کامل خواص اولیه نگردد. جذب آب به وسیله کامپوزیت از قانون عمومی انتشار فیک (Fick’s Law) تبعیت کرده و با جذر زمان متناسب است. از طرفی سرعت دقیق جذب رطوبت به عواملی همچون میزان خلل و فرج، نوع الیاف، نوع رزین، جهت و ساختار الیاف، درجه حرارت، سطح تنش وارده، و حضور ریزترک‌ها بستگی دارد. در ادامه تأثیر رطوبت بر اجزای کامپوزیت را مورد بحث قرار می‌دهیم.  

تأثیر رطوبت بر ماتریس پلیمری

جذب آب توسط رزین ممکن است در مواردی برخی از خصوصیات رزین را تغییر دهد. چنین تغییراتی عمدتاً در دمای بالای 120 درجه ممکن است اتفاق بیفتد و در اثر آن سختی کامپوزیت به شدت کاهش یابد؛ اگر چه چنین وضعیتی عمدتاً در مصارف کامپوزیت‌ها در مهندسی عمران و به خصوص در سازه‌های در مجاورت آب، کمتر پیش می‌آید و مورد توجه نیست. از طرفی جذب رطوبت یک تأثیر سودمند نیز بر کامپوزیت دارد؛ جذب رطوبت باعث تورم رزین شده که این مساله به نوبه خود تنش‌های پس‌ماند بین ماتریس و الیاف را که در اثر انقباض ضمن عمل‌آوری کامپوزیت ایجاد شده، کاهش می‌دهد. این مساله باعث آزاد شدن تنش‌های بین ماتریس و الیاف شده و ظرفیت باربری را افزایش می‌دهد. از طرفی گزارش شده است که در کامپوزیت‌هایی که به صورت نامناسب ساخته شده‌اند، در اثر وجود حفره‌ در سطح بین الیاف و ماتریس و یا در لایه‌های کامپوزیت، نفوذ آب در داخل حفره‌ها و یا در سطح مشترک الیاف و ماتریس ممکن است به سیلان رزین منجر شود. این مساله را می‌توان با انتخاب مناسب مواد رزین و یا آماده‌سازی صحیح سطح الیاف‌ و نیز بهبود تکنیک‌های ساخت، حذف نمود.  

تأثیر رطوبت بر الیاف‌

اعتقاد عمومی بر آن است که الیاف شیشه چنانچه به صورت طولانی مدت در کنار آب قرار گیرند، آسیب می‌بینند. دلیل این مساله آن است که شیشه از سیلیکا ساخته شده که در آن اکسیدهای فلزات قلیایی منتشر شده‌اند. اکسیدهای فلزات قلیایی هم جاذب آب بوده و هم قابل هیدرولیز هستند. با این وجود، در اکثر موارد مصرف در مهندسی عمران، از E-glass و S-glass استفاده می‌شود که فقط مقادیر کمی از اکسیدهای فلزات قلیایی را داشته و بنابراین در مقابل خطرات ناشی از تماس با آب، مقاوم هستند. در هر حال کامپوزیت‌های ساخته شده از الیاف شیشه باید به خوبی ساخته شده باشند، به‌صورتی‌که از نفوذ آب به مقدار زیاد جلوگیری ‌کنند؛ زیرا حضور آب در سطح الیاف شیشه انرژی سطحی آنها را کاهش می‌دهد که می‌تواند رشد ترک‌خوردگی را افزایش دهد. از طرفی الیاف آرامید نیز می‌توانند مقادیر قابل توجهی از آب را جذب کنند که منجر به باد کردن و تورم آنها می‌شود. با این وجود اکثر الیاف با پوششی محافظت می‌شوند، که پیوستگی خوب با ماتریس داشته و نیز حفاظت از جذب آب را به همراه دارد. لازم به ذکر است که تحقیقات متعدد، نشان می‌دهد که رطوبت هیچگونه تأثیرات سوء شناخته‌شده‌ای را بر الیاف کربن به دنبال ندارد.  

رفتار عمومی کامپوزیت‌های اشباع شده با آب

کامپوزیت‌های با ‌آب اشباع شده معمولاً کمی افزایش شکل‌پذیری (Ductility) در اثر نرم‌شدگی (Softening) ماتریس از خود نشان می‌دهند. این مساله را می‌توان یک جنبه سودمند از جذب آب در کامپوزیت‌های پلیمری بر‌شمرد. همچنین افت محدود مقاومت و مدول الاستیسیته می‌تواند در کامپوزیت‌های با آب اشباع شده اتفاق بیفتد. چنین تغییراتی معمولاً برگشت‌پذیر بوده و بنابر‌این به محض خشک شدن کامپوزیت‌، ممکن است اثر خواص از دست رفته مجدداً جبران شود. شایان توجه است که افزایش فشار هیدرواستاتیک (مثلاً در مواردی که کامپوزیت‌ها در مصارف زیر آب و یا در کف دریا به کار می‌روند)، لزوماً به جذب آب بیشتر توسط کامپوزیت و افت خواص مکانیکی آن منجر نمی‌شود. بدین ترتیب انتظار می‌رود که اکثر سازه‌های پلیمری زیر‌ آب، دوام بالایی داشته باشند.  در حقیقت، تحت فشار هیدرواستاتیک، جذب آب به دلیل بسته شدن ریز‌ترک‌ها و ضایعات بین سطحی، کمی کاهش می‌یابد. لازم به ذکر است که جذب آب بر خواص عایق بودن کامپوزیت‌ها اثر می‌گذارد. حضور آب آزاد در ریزترک‌ها می‌تواند خاصیت عایق بودن کامپوزیت را به شدت کاهش دهد.

ادامه مطلب

روش‌های تولید کامپوزیت FRP

1

روش اول: بافتن رشته‌ها به هم یا Filament winding

  • الیاف یا رشته‌های پیوسته به صورت نوارهای موازی به دور سیلندر پیچانده شده و رشته‌های فیبر به دور آن تابیده می‌شود. در این حین ماتریس رزین پلی استروینیل استر یا اپوکسی به درون سیلندر دوار دمیده شده و با فیبرها ترکیب می‌شود تمامی این فرایند برای بدست آمدن FRP با کیفیت مناسب با کامپیوتر کنترل می‌شود.
  • موارد مصرف FRP تولیدی به این روش در :
    • لوله سازی
    • ساخت لوله‌های تحت پیچش
    • بدنه وجداره موشک
    • بطری‌ها و شیشه‌های تحت فشار
    • تانکهای ذخیره
    • فیوز تأخیری هواپیما و… می‌باشد.

روش دوم: فرایند پالتروژن (Pultrusion)

در این روش لمینیت‌ها یا ورق‌های پوششی با مقطع عرضی و طول معین ساخته می‌شود. در حین کشیدن نوار فیبر، ماتریس که معمولاً پلی استر یا وینیل استر می‌باشد با گرمای الکتریکی به کمک روغن داغ به فیبر اضافه می‌شود و اتاقک پیش گرمایشی فرکانس رادیویی برای کنترل ضخامت در زمان عمل آوری وجود دارد.  

روش سوم: روند تولید از طریق فرآیند فشرده سازی در خلأ

در این روش وزن هوای بین لایه‌های FRP مانع از تشکیل آن می‌گردد بنابراین بر اثر پرس و فشار اعمالی بایستی هوای محبوس خارج شود تا ورق پوشی FRP یا لمینیت شکل گیرد. یک یا چند لایه با ضخامت مختلف روی فیلم یا غشا قابل گسترش قرار داده شده، سپس تحت پرس و فشار قرار می‌گیرند تا هوای بین لمینیت خارج شده و ماتریس رزین به یکی از روش‌های موجود حرارت داده شده و به لایه فیبر تزریق می‌شود.  

ادامه مطلب

انکراژ و استرات چیست؟

TWA-hotel-JFK-airport-eero-saarinen-terminal-new-york-1WTC-lounge-designboom-07

انکراژ یا مهارگذاری خاک چیست؟

اصول اجرای روش مهارگذاری یا انکراژ مشابهت‌‎های فراوانی با روش نیلینگ (میخکوبی) دارد. تفاوت اصلی در اعمال نیروی پس تنیدگی برای المان تسلیح می باشد. گام های اجرایی مشابه روش میخکوبی و شامل خاکبرداری مقطعی، حفاری گمانه ها، نصب میلگرد تسلیح، تزریق دوغاب سیمان (در بخشی از طول گمانه)، بتن پاشی و نصب صفحه سر نیل و مهره می‌باشند. پس از گذشت مدت زمان مناسب جهت عمل آوری دوغاب سیمان، با نصب پایه جک، جک کششی و نیروسنج، نیروی پس تنیدگی تا مقدار مورد نظر طراحی به میلگرد تسلیح و دوغاب اطراف آن اعمال می‌شود.
لازم به‌ذکر است در بعضی از موارد عملیات حفر چاه وچود نداشته و پروفیل حائل فولادی پس از اتمام عملیات مقطعی خاکبرداری، حفاری و نصب المان تسلیح در محل مربوطه می‌شود. در نهایت پس از این مرحله عملیات کشش المان تسلیح (اعمال نیروی پس تنیدگی) صورت می پذیرد.
در مرحله اول یک دیوار نگهبان اجرا می­ گردد. در مرحله دوم خاکبرداری تا تراز نصب اولین ردیف انکرها انجام می­ گردد. در مرحله سومحفاری گمانه جهت اجرای انکر انجام می­ گردد. در مرحله چهارم تزریق و در مرحله پنجم پس از گیرش دوغاب عملیات کشش و خاکبرداری و اجرای پوشش بتنی انجام می­ گردد. در این روش امکان اجرای پوشش دائمی نیز در صورت نیاز وجود دارد. این پوشش ها نیز می­ تواند از نوع بتن پاششی، بتن پیش ساخته، بتن درجا ریز و سایر انواع تکنولوژی ­های جدیدتر برای اجرای پوشش طرح دار و سازگار با محیط می ­باشد. در روش انکراژ انواع روش های تزریق جهت تامین مقاومت قسمت گیردار وجود دارد.

استرات یا مهارگذاری فشاری خاک

در این روش از مهارهای فشاری جهت انتقال فشار خاک استفاده می گردد. اجزای تشکیل دهنده این سیستم به طور کلی شامل دیوار که می تواند از نوع Sheet Pile، دیوار دیافراگمی، شمع‌های نگهبان فلزی یا بتنی و غیره باشد، اعضای فشاری بنام Strut یا Brace و اعضای واسط بین دیوار و اعضای فشاری که Wale نامیده می شوند.
در این روش فشار خاک از طریق دیوار به Wale و از طریق Wale به Strutها منتقل می شود و در نتیجه Strutها و اتصال آنها بر اساس نیروس فشاری، Waleها بر اساس نیروی برشی و خمشی و دیوار نیز بر اساس نیروهای ترکیبی طراحی می گردد.
در این روش ابتدا شمع­‌های نگهبان پیرامونی به عنوان دیوار موقت اجرا شده و سپس در هر مرحله از گودبرداری Wale ها اجرا و Strut ها به آن متصل می‏‌گردند.
در این روش برای طراح می­‌توان از مدل‌سازی­‌های ۲D یا ۳D استفاده نمود و حالات حدی نهایی و سرویس پذیری را کنترل و براساس نیروهای بدست آمده اعضای سازه­‌ای را طراحی نمود. اعضای سازه‌­ای عموماً فولادی بوده و مطابق آئین نامه‌­های سازه‌های فولادی طراحی می­‌گردند.

ادامه مطلب

سازه FRP چیست؟

u-boot-design-terms-
FRP (اف ار پی) در لغت مخفف کلمه Fiber Reinforced Polymer به معنی پلیمرهای تقویت شده با فیبر است. FRP (اف آر پی) از دو جزء ماتریس (رزین FRP) و فیبر (الیاف FRP) تشکیل می‌شود و کاربردهای متفاوتی در صنایع مختلف و ساختمان دارد. ببیشترین کاربرد این مصالح در مقاوم سازی سازه‌ها، جهت ترمیم، تقویت و مقاوم سازی ساختمان‌های بتنی بوده و در صنعت کامپوزیت جهت ساخت قطعات صنایع مختلف است. الیاف FRP با قرار گرفتن و نصب بر روی سطوح بتنی از قبیل دال‌ها، تیرها، ستون‌ها، دیوارهای بتنی و فونداسیون بتنی می‌تواند باعث افزایش مقاومت بتن شوند. همچنین این الیاف می‌تواند در ساختمان‌هایی با کاربری مسکونی، تجاری، اداری، صنعتی، تکیه‌گاه ماشین آلات و تاسیسات سنگین و همچنین سازه‌های آبی و دریایی مانند سد و کانال نیز کاربرد داشته باشند. علاوه بر این از الیاف FRP می‌توان در مقاوم‌سازی زیرساخت‌های مهندسی از قبیل پل‌های جاده‌ای و ریلی، مخازن آب و مواد شیمیایی، سیلوها و برج‌های خنک کننده نیز استفاده کرد.‏
به صورت کلی اف ار پی ترکیبی از دو ماده است. بخش اول آن ماتریس بوده و جز دیگر آن الیاف است. ماتریس خود از برخی مواد شیمیایی مانند رزین‌های اپوکسی و پلی استر تشکیل شده است. این مواد جهت کاهش قیمت  تمام شده و بهبود خواص مکانیکی و شیمیایی دارای فیلرها و افزودنی‌هایی هستند. نقش الیاف و فیبر، تامین مقاومت مکانیکی کافی در FRP است. در حالی که ماتریس نقش باربری مکانیکی ندارد و تنها باید از الیاف در مقابل خوردگی، عوامل محیطی و آسیب دیدن محافظت نماید. همچنین انتقال بار در FRP به کمک ماتریس و از طریق انتقال نیروی برشی بین فیبرها صورت می‌پذیرد. از دیگر کاربردهای ماتریس، کنترل کمانش موضعی الیاف تحت فشار است. بیشتر حجم FRP را الیاف تشکیل می‌دهند. عواملی مختلفی در بهره‌وری الیاف FRP تاثیر گذار هستند. از جمله این عوامل می‌توان به موارد زیر اشاره نمود:‏
  • نوع الیاف FRP
  • درصد مقدار الیاف موجود در FRP
  • نحوه قرارگیری الیاف FRP
  • ضریب انتقال حرارت
این عوامل در مقاومت کششی، خمشی، برشی، خستگی و مقاومت در برابر الکتریسیته بسیار موثر هستند. همچنین این عوامل در میزان قیمت تمام شده محصول نیز بسیار پر اهمیت بوده و بر خرید و فروش آن در مسائل اقتصادی تاثیر گذار هستند.

ورقه‌های FRP

ورقه های اف ار پی، ورقه های با ضخامت چند میلیمتر از جنس کامپوزیت هستند. این ورقه ها یا لمینیت ها با چسب های مستحکم و مناسب به سطح بتن چسبانده می شوند. از ورقه‌های FRP جهت تعمیر و تقویت سازه‌های آسیب دیده (ناشی از زلزله و یا ناشی از خوردگی آب های یون دار) استفاده می شود. لمینیت FRP از لحاظ شکل پذیری می‌تواند به صورت صفحات منعطف و سخت باشد. صفحات FRP منعطف خاصیت شکل پذیری بالایی دارند و می‌توانند در شعاع های کم خم شوند. صفحه های سفت در ضخامت های زیاد تولید می شوند و بر خلاف سایر ورقه ها، شکل پذیر نیستند و در عرض‌های مختلف یافت می‌شوند.
همان طور که اشاره شد الیاف FRP  مصالحی پارچه ای هستند که  فیبر های آن در یک جهت یا دو جهت قرار دارند. جنس فیبرها می‌تواند از جنس کربن و یا شیشه باشد که الیاف بافته شده از آن‌ها به الیاف شیشه GFRP و الیاف کربن CFRP معروف هستند. از روی هم گذاشتن چند لایه الیاف FRP و آغشته کردن آن‌ها به رزین و فشرده کردن آن‌ها برای رسیدن به مقاومت و ضخامت‌های مورد نیاز، ورقه‌های FRP تشکیل می‌شوند. ورقه های FRP با چسب اپوکسی به سطوح مورد نظر بتنی و فولادی می چسبند و باعث افزایش مقاومت المان‌های باربر می‌شوند. از ورقه‌های FRP در اکثر مواقع برای مقاوم سازی و به‌سازی ساختمان‌ها در پروژه‌های مقاوم سازی و به‌سازی لرزه ای سازه‌ها استفاده می‌شود.

کابل، نوار، تاندون‌های پیش تنیدگی FRP

کابل‌های FRP محصولات شبیه میله‌‌های FRP، ولی به صورت انعطاف پذیر هستند که در سازه‌های کابلی و بتنی پیش‌ تنیده در محیط‌های دریایی و خورنده کاربرد فرآوان دارند. این محصولات در اجزای پیش تنیده در مجاورت آب نیز به کار گرفته می‌شوند.

میل‌گردهای FRP

فولادها به طور مختصر در مقابل خوردگی به وسیله محیط قلیایی بتن محافظت می‌شوند اما خیلی از سازه هایی که در محیط های مهاجم از قبیل سازه های دریایی، پل‌ها و پارکینگ‌ها که در معرض عوامل مهاجم قرار می‌گیرند ترکیب رطوبت، افزایش دما و محیط کلریدی،خواص  قلیایی بتن را کاهش می دهد و سبب خوردگی فولادها می‌شود. به همین خاطر امروزه از میلگردهای ساخته شده با مواد پلیمری FRP در این سازه ها استفاده می کنند. به دلیل اینکه میلگردهای اف ار پی برای یک رفتار غیر شکل‌پذیر می باشند لذا موارد استفاده این میلگردها محدود به سازه‌های می‌شود که مهمترین مشکل آنها خوردگی یا مشکلات الکترومغناطیسی می‌باشد. میلگردهای فولادی دارای رفتاری تقریباً همسانگرد می‌باشند ولی میلگردهای FRP به بتن تاثیر می‌گذارد. مصالح FRP برخلاف مصالح فولادی رفتار الاستیک خطی از خود نشان می‌دهند.

شبکه کامپوزیتی FRP

شبکه کامپوزیتی FRP از دیگر محصولات کامپوزیتی هستند که از برخورد میله‌های اف ار پی  در دو جهت و یا سه جهت ایجاد می‌شوند. نمونه ای از این محصولات شبکه کامپوزیتی Nefmac است که از فیبرهای کربن، شیشه ای و یا آرمید و رزین اپوکسی، وینیل استر و یا پلی استر تولید می‌شود و برای مسلح کردن بتن مناسب است. گریتینگ FRP نیز که به روش سیستم قالبی (Modled) حرارتی تولید می‌شود در صنایع و اکثر کارخانجات دارای مواد خورنده کاربرد دارند.

پروفیل‌های ساختمانی FRP

مصالح FRP همچنین در شکل پروفیل های ساختمانی به صورت I شکل، T شکل، نبشی و ناودانی و به روش پالتروژن (Pultrusion) تولید می‌شوند. در این روش دسته‌هایی از فیبر یا نخ یا رشته های FRP پس از آغشته شدن با رزین از یک قالب عبور کرده و در کنار هم قرار گرفته و یک پروفیل دارای مقطع ثابت را به وجود می‌آورند. از عمده‌ترین مزایای روش پالتروژن چند منظوره بودن آن و کاربردهای گوناگون آن در صنایع مختلف است. به عبارتی صرفاً با تغییر قالب دستگاه می‌توان علاوه بر محصولاتی که در صنعت ساختمان کاربرد دارد، همانند انواع میلگردها و آرماتورهای اف ار پی، محصولات گوناگون دیگری در حوزه‌های مختلف از جمله تسمه‌های ماشین نساجی، ریل ها، محافظ اتوبان ها یا گارد ریل، چارچوب پنجره‌ها و درها، تیرهای با مقطع I شکل، نبشی‌ها و غیره تولید نمود. عمر مفید و دوام محصولات پالتروژنی بسیار بالاست و سرعت تولید یک محصول پالتروژنی نیز نسبتاً زیاد است. از نظر قیمت نیز با وجود اینکه یک تیر پالتروژنی قیمت ظاهری بیشتری نسبت به نمونه مشابه آهنی دارد؛ ویژگی هایی مانند مقاومت بالا در برابر خوردگی و زلزله و دوام آن می‌تواند توجیه‌ کننده قیمت اولیه بالای آن باشد. در مصارف عمومی مانند ساخت سازه‌ها اگر نیاز به مقاومت در برابر خوردگی و زلزله وجود داشته باشد، استفاده از تیرهای پالتروژنی می‌تواند توجیه اقتصادی نیز داشته باشد. لذا محصولات پروفیل FRP می‌توانند جایگزین بسیار مناسبی برای قطعات و سازه‌های فولادی تلقی شوند.

ادامه مطلب

اتاق تمیز چیست؟

20120531_hi

تعریف

اتاق تمیز اصولاً به محیطی گفته می‌شود که جهت تولید و یا تحقیقات علمی و صنعتی در آن فعالیت‌هایی صورت می‌گیرد و در این محیط مقدار آلاینده‌های زیست محیطی بسیار پایین تر از حد معمول فضای یک محیط بسته می‌باشد. آلاینده‌های معمول عبارتند از: گرد و غبار، میکروب‌های معلق در فضا و بخار مایعات محیطی. بطور دقیق تر اتاق تمیز محیطی با آلایش کنترل شده ذرات معلق در فضاست که در هر متر مکعب آن تعداد معینی ذره موجود است. بطور مثال در ساختار تعریف شده در ISO 9 برای اتاق‌های تمیز تعداد کمتر از ۳۵ میلیون ذره در هر متر مکعب تشریح شده‌ است.
اتاق تمیز می‌تواند فضای بسیار بزرگی باشد بطوریکه گاهی اوقات تمامی یک کارخانه با هزاران متر مربع مساحت می‌تواند در سوله‌هایی با فضای تعریف شدهٔ اتاق تمیز و زمین‌های پوشیده شده با کف پوش مخصوص اینگونه اتاقها ساخته شده باشد.
اتاق‌های تمیز معمولاً برای تولید مواد نیمه رسانا مانند ژرمانیوم، سیلیکون و یا برای تولید لوازم تکنولوژیک پزشکی و زمینه‌های دیگر که تولیدات مربوط به آنها نیاز به محیطی بسیار پاکیزه و فاقد آلودگیهای عادی محیط دارند.
جریان هوای هدایت شده به داخل اتاقهای تمیز توسط دستگاه مخصوص تصفیه و فیلتر می‌شوند و همچنین هوای داخل محیط بطور دائم در چرخش و تصفیه مجدد قرار می‌گیرد و توسط دستگاههای تمیز کننده ذرات هوای قوی (HEPA) و یا (ULPA) پردازش می‌شوند تا ذرات ایجاد شده در محیط اتاق تمیز نیز از بین بروند.
کارکنان از دوش هوا که در اتاق مخصوصی در محل ورود به سالن تعبیه شده می‌گذرند و همواره از لباسهای مخصوص و پوشیده مانند کلاه و ماسک و دستکش و روپوش و کفش ویژه و… استفاده می‌کنند. حتی وسایل کار و دستگاههای موجود در اتاق تمیز نیز به شکلی طراحی شده‌اند تا کمترین تعداد ذرات معلق در هوا از نتیجه کارشان حاصل شود. قابل توجه‌است که اتاق تمیز محیط استریل نیست و الزاماً به دلیل تعداد کنترل شده ذرات معلق در هوای محیط، اتاق تمیز نامیده می‌شود. این ذرات توسط دستگاه شمارنده این ذرات قابل اندازه گیری هستند.
برخی اتاق‌های تمیز دارای فشار مثبت هوا هستند و در این موارد در صورت وجود هرگونه درز و شیار در محیط اتاق تمیز به هوای بیرون، هوا از محیط اتاق تمیز خارج می‌شود و با این فشار مثبت هوا، از ورود هوای بیرون از این شیارها به داخل اتاق پیشگیری صورت می‌گیرد. برخی اتاقهای تمیز نیز به دستگاههای ویژه کنترل رطوبت هوا مجهز هستند که تلاش می‌کنند تا در موارد مورد نیاز رطوبت محیط را پایین نگه دارند. اتاقهای تمیز رده پایین شاید نیازی به تمامی این موارد نداشته باشند و تنها با رعایت پوشش کارکنان و بویژه کفش‌های آنها و یا تعویض روپوش، فضای دلخواه را پدید آورند.
در واقع کنترل حضور ذرات خارجی با اندازه‌های معلوم تاثیر بسیار زیادی در سلامت و کیفیت دارو و همچنین انجام صحیح و بهداشتی یک عمل جراحی در بیمارستان دارد که این موضوع وظیفه مهندسان مکانیک برای طراحی دقیق و تست اتاق‌های تمیز است. از جمله کاربردهای دیگری که اتاق‌های تمیز دارند می‌توان به تولید قطعات خاص و دقیق مورد استفاده در کاربردهای نظامی و علوم هوافضا و اپتیک اشاره کرد. علاوه بر موارد ذکر شده و همانطور که در ابتدای این مبحث اشاره شد، اتاق تمیز کاربرد زیادی در تولید نیمه‌هادی‌ها و قطعات الکترونیکی، تولید داروهای مختلف، صنعت بایو و ابزارهای مختلف پزشکی دارد.
همانطور که اشاره شد، کنترل آلودگی و ذرات معلق مستلزم رعایت قوانین و مقررات خاصی توسط اتاق‌های تمیز و طراحان آن‌ها است. بدین منظور استانداردهای مختلفی برای کاهش ذرات معلق و آلودگی‌ها در کنار سایر پارامترها مانند دما، رطوبت و فشار به وجود آمده است. در واقع همانطور که می‌دانید هدف اصلی در طراحی‌های رایج تهویه مطبوع ساختمان‌ها، کنترل دما و رطوبت است و در اتاق‌های تمیز، بحث ذرات و کنترل اندازه و تعداد این ذرات نیز به طراحی سیستم تهویه مطبوع اضافه می‌شود و یکی از راه‌ها برای کنترل این ذرات استفاده از فیلتر‌های مختلف است. شکل زیر نمونه‌ای از این فیلترها را به تصویر کشیده است.
CleanRoom4
بنابراین همانطور که اشاره شد راه حل رایج برای کنترل پارامترهای مختلف در اتاق تمیز استفاده از فیلتر است. شکل بالا فیلتر رایج «هپا» (HEPA) را نشان می‌دهد که این فیلتر یکی از پرطرفدارترین و موثرترین روش‌های تصفیه هوا است. در واقع عبارت هپا فرم خلاصه شده عبارت «حذف ذرات معلق هوا با کارایی بالا» (High Efficiency Particulate Air) شناخته می‌شود.
از فیلتر هپا برای به دام انداختن ذرات با اندازه 0.3 میکرو متر و بزرگتر، استفاده می‌شود. در واقع در این روش، تمام هوایی که قرار است به داخل اتاق تمیز وارد شود باید از فیلتر هپا عبور کند. در برخی از موارد نیز نیاز به رعایت استاندارد بالا برای اتاق‌های تمیز است و کیفیت هوا و کارایی بالا برای تولید محصولات مختلف امری ضروری است. در این موارد از فیلتر «اولپا» (ULPA) استفاده می شود که این فیلتر نفوذ پذیری بسیار پایین و دقت بسیار بالایی دارد. اوپلا مخفف عبارت «حذف ذرات معلق بسیار ریز» (Ultra Low Particulate Air) است.
علاوه بر موارد ذکر شده که به کنترل آلودگی‌ها توسط فیلتر کردن مربوط بود، کنترل ورود و پخش آلودگی توسط انسان نیز اهیت بسیار زیادی در اتاق‌های تمیز دارد. بنابراین باید توجه کرد که کار کردن در اتاق تمیز مستلزم رعایت شرایط خاصی است و باید بارها تمرین‌های مختلفی انجام شود تا آمادگی لازم برای انجام فعالیت در این شرایط ایجاد شود و کارکنان بتوانند به خوبی نکات ضروری را رعایت کنند. هنگام ورود به اتاق تمیز باید لباس‌های خاصی پوشیده شود که بتواند از انتشار آلودگی و ذرات مختلف از سطح بدن جلوگیری کند. همچنین ورود به اتاق تمیز از اتاق‌های کوچکی به نام هوابند یا «قفل هوا» (Airlock) صورت می‌گیرد.
هوابند یک دستگاه تنظیم فشار است و زمانی مورد استفاده قرار می‌گیرد که یک شخص یا هر وسیله دیگری از یک مکان به مکان دیگر که از لحاظ فشار هوا متفاوت هستند، عبور کند. شکل زیر نمونه‌ای از هوابندهای مورد استفاده در اتاق‌های تمیز و پوشش خاص کارکنان هنگام ورود به یک اتاق تمیز را به تصویر کشیده است.
CleanRoom5

ادامه مطلب

برای اجرای پروژه خود سوال یا ابهامی دارید؟ برای مشاوره رایگان با ما تماس بگیرید.

دفتر منطقه ای  اصفهان

دفتر منطقه ای
اصفهان

دفتر مرکزی  تهران

دفتر مرکزی
تهران

شماره همراه تلگرام - واتزاپ

شماره همراه
تلگرام - واتزاپ

اخبار و تازه‌ها

مقاوم‌سازی ساختمان‌های کج شده

مقاوم‌سازی ساختمان‌های کج شده

راه‌کارهای مقاوم‌سازی ساختمان‌های کج شده شاقولی کردن سازه کج شده هیچ­گاه کار آسانی نبوده است....

ادامه . . .

رجبی رییس نظام مهندسی شد.

رجبی رییس نظام مهندسی شد.

پس از آنکه فرج‌الله رجبی، شهرام کوسه غراوی، عباس وثیق نیا در ماه‌های گذشته با رای اعضای سازمان...

ادامه . . .

علل کج شدگی ساختمان چیست؟

علل کج شدگی ساختمان چیست؟

علل کج شدگی ساختمان کج شدگی یک سازه، به ندرت تنها از یک مشکل نشأت می‌گیرد. در عمل فاکتورهای...

ادامه . . .

Slideshow

Slideshow

Grid

Grid

Grid Stack

Grid Stack

Switcher

Switcher

Map

Map

Accordion

Accordion

Gallery

Gallery

Grid Slider

Grid Slider

Slider

Slider

Parallax

Parallax

Slideset

Slideset

List

List

Popover

Popover

Switcher Panel

Switcher Panel

Slideshow Panel

Slideshow Panel