الیاف FRP (بخش دوم)

Shear-Stud-2

الیاف شیشه GFRP

الیاف شیشه GFRP ارائه شده توسط شرکت مقاوم سازی افزیر، رایج ترین و پر مصرف ترین الیاف مورد استفاده در صنعت کامپوزیت است که یکی از دلایل مقدار بالای فروش الیاف شیشه می‌باشد. قیمت الیاف شیشه در مقایسه با انواع الیاف کربن و آرامید بسیار پایین بوده و همین امر سببب شده است در سال های اخیر فروش الیاف شیشه بیشتر شود.
رشته الیاف شیشه از فیبرهای شیشه ای (glass fiber) تشکیل می‌شوند که تارهایی به ضخامت حدود ۱۰ میکرون هستند. مقاومت کششی و شیمیایی بسیار بالای الیاف باعث شده تا استفاده از آنها در ساخت قطعات صنایع هوا فضا، خودرو، دریایی و ساختمانی، تجهیزات مبلمان و تجهیزات ورزشی،، روز به روز بیشتر شود. الیاف FRP شیشه متداول ترین محصول برای مقاوم سازی، تقویت و بهسازی انواع سازه‌ها در صنعت ساختمان بوده، همچنینن این مصالح برای حفاظت اجزای مختلف در محیط های خورنده و شیمیایی FRP lining (ایزوله کردن لوله های فلزی و حفاظت شیمیایی در محیطهای خورنده با PH خیلی بالا یا کم)، نیز کاربرد گسترده‌ای دارند.

مزایای الیاف شیشه GFRP

مزایای اصلی الیاف شیشه به شرح زیر است:
  • قیمت الیاف شیشه مناسب تر از سایر الیاف است.
  • مقدار بالای فروش الیاف شیشه سبب در دسترس بودن انواع مختلف آن باشد.
  • استحکام کششی الیاف شیشه ای بالا می‌باشد.
  • فیبر شیشه‌ای عایق الکتریکی خوبی است یا به عبارت دیگر الیاف شیشه رسانا نیستند.
  • مقاومت شیمیایی الیاف شیشه بالا بوده و مناسب محیط های مستعد خوردگی هستند.
  • مقاومت مناسب حرارتی

معایب الیاف شیشه GFRP

معایب و ضعف‌های الیاف شیشه‌ای در مقایسه با سایر الیاف در ذیل لیست شده است:
  • فیبر شیشه مدول کششی پایین تری نسبت به الیاف کربن دارند و همین مسئله سبب می‌شود تا مهندسین سازه جهت مقاوم‌سازی ساختمان‌ها با FRP بیشتر رغبت به استفاده از الیاف کربن به جای الیاف شیشه داشته باشند.
  • وزن مخصوص الیاف پلیمری شیشه در مقایسه با انواع الیاف کربن و کولار نسبتا بالا می‌باشد.
  • الیاف شیشه نسبت به سایش در حین حمل و نقل حساس می‌باشند.
  • مقاومت در برابر خستگی الیاف شیشه نسبتاً پایین است.
  • الیاف شیشه‌ای GFRP نسبتا شکننده بوده و تردتر می‌باشد.
  • سختی الیاف شیشه زیاد بوده و در نتیجه باعث سایش قالب‌ها و کند شدن ابزار برش در کارهای کامپوزیتی می‌گردد.
نکته قابل توجه در مورد رشته الیاف شیشه ای، تشکیل شدن آن از الیاف یا فیبر شیشه ای با قطر کم است که در صورت ظهور پدیده شکست به جهت رشد ترک‌ها که می‌تواند ناشی از وجود ترک‌های ریز با نقص های سطحی موجود بر سطح الیاف باشد تنها الیاف یا فیبر شیشه‌ای منفرد می‌شکنند و از شکست کامل رشته الیاف جلوگیری به عمل می‌آید. بنابراین یک رشته الیاف دارای استحکام شکست بیشتری نسبت به یک الیاف به قطر کلی مشابه آن می‌باشد زیرا در الیاف ضخیم رشد ترک ناشی از نقص‌های سطحی منجر به شکست کامل آن می‌گردد.

ادامه مطلب

الیاف FRP (بخش اول)

Shear-Stud-2

الیاف کربن CFRP (فیبر کربن)

فیبر کربن (الیاف کربن) رشته الیافی است که از حرارت دادن مواد عالی که قسمت عمده‌ی آن کربن می‌باشد در محیط گاز های بی اثر به دست می‌آید. الیاف کربن به الیافی گفته می‌شود که دست کم دارای 90 درصد کربن هستند و از پیرولیز کنترل شده الیافی ویژه به دست می آیند. فیبر کربن مشکی رنگ، غیر حلال در آب و بدون بو بوده که مقاومت بسیار بالایی در برابر مواد خورنده مثل اسیدها، بازها و مواد عالی دارا می باشند. این الیاف به صورت تک جهته که در آن فیبر کربن موازی با راستای صفر درجه و دو جهته که در آن فیبر کربن به صورت دو راستای صفر و عمود بر آن (90 درجه) قرار گرفته‌اند موجود می‌باشد. فیبر کربن در زمینه‌های متعددی مانند مقاوم‌سازی ساختمان‌ها، صنایع دفاعی، خودرو سازی، و بسیاری از صنایع مهم دیگر کاربرد دارد. الیافی که در ساخت فیبر کربن یا همان CFRP ها مورد استفاده قرار می‌گیرد معمولا توسط عناصری مثل رزین اپوکسی به المان ها و اعضای باربر در سازه ها اضافه شده و ظرفیت برشی، خمشی و محوری اعضا را بهبود می‌بخشند.
فیبر کربن مقاومت بالایی در برابر حرارت دارند که باعث می‌شود آن‌ها را در دسته الیاف غیر قابل انفجار دسته‌بندی کرد. هم چنین سبک بودن آن‌ها و مقاومت بالایشان سبب استفاده گسترده از آن‌ها در صنعت کامپوزیت FRP و به‌سازی لرزه‌ای سازه‌ها شده است. یکی از مهم ترین مزیت های فیبر کربن در کنار سبک وزن بودن آن‌ها مقاومت کششی بسیار بالای این الیاف است.
فیبر کربن یکی از پرکاربرد ترین الیاف در صنعت مقاوم سازی و کامپوزیت است. این الیاف بیشترین مقدار ضریب ارتجاعی را نسبت به الیاف شیشه و کولار دارد. ضریب انبساط گرمایی خطی این نوع الیاف در دماهای بالا و پایین بسیار کم می‌باشد که این مساله باعث پایداری ابعادی الیاف کربن در دماهای متفاوت می‌گردد. در بین مزایای مختلف الیاف کربن، برجسته ترین آنها مقاومت کششی فوق العاده نسبت به وزن آن است (کربن تقریبا یک سوم فولاد وزن و ۵ الی ۱۰ برابر آن مقاومت دارد). علاوه بر آن الیاف و فیبر کربن  مقاومت خوبی در برابر خستگی دارند. دوام و عمر طولانی در برابر مواد شیمیایی و نفوذ ناپذیری در برابر اشعه x از بارزترین خصوصیات فیبر کربن به شمار می‌رود. همچنین فیبر کربن رسانایی الکتریکی بسیار خوبی دارد و قابلیت بافت و تولید پارچه، ساخت کامپوزیت‌‌های سبک و مستحکم CFRP و پایداری در برابر حرارت آن را از سایر مواد مهندسی متمایز می‌سازد. فیبر کربن عنصری با دانسیته  ۲٫۲۷g/cm3 است و اشکال بلوری مختلفی دارد. رشته الیاف کربن که از فیبر کربن تشکیل می‌گردد، به مراتب نازکتر از موی انسان در قطر بین ۶ تا ۱۰ میکرومتری می‌باشند. قیمت بالای الیاف کربن با توجه به عمر مفید بالای آن‌ها ”و تامین مقاومت بالا برای اعضای سازه در طول زمان به صرفه و اقتصادی” است.

دسته‌بندی انواع فیبر کربن

فیبر کربن معمولا بر اساس تعداد فیلامنت، مقاومت کششی، مدول الاستیسیته، و دمای نهایی عملیات حرارتی دسته‌بندی می‌گردند.
الیاف کربن بر اساس تعداد فیلامنت به رشته الیاف کمتر از ۲۴۰۰۰ فیلامنت که توو (TOW) کوچک یا سبک و رشته الیاف بیشتر از ۲۴۰۰۰ فیلامنت که اصطلاحاً توو بزرگ یا سنگین نامیده می‌شوند، دسته‌بندی می‌گردند.
الیاف کربن بر اساس مشخصات مکانیکی نیز به صورت الیاف یا فیبر کربن با مدول الاستیسیته بسیار بالا ( بیشتر از ۵۴۰ GPa)، فیبر کربن با مدول یانگ بالا (۳۵۰-۴۵۰ GPa) و فیبر کربن با مدول متوسط (۲۵۰-۳۵۰ GPa) و همچنین فیبر کربن با مقاومت کششی گسیختگی بالا و مدول پایین (مقاومت کششی بیشتر از ۳۰۰۰ مگا پاسکال و مدول کمتر از ۲۰۰۰ گیگا پاسکال) و الیاف و فیبر کربن با استحکام کششی بسیار بالا (بیشتر از ۵۰۰۰ MPa) دسته بندی می‌گردند.
همچنین الیاف کربن بر اساس مبنای زمینه به صورت فیبر کربن با مبنای الیاف اکریلیک (پلی اکریلونیتریل)، الیاف کربن با مبنای قیر صنعتی، فیبر کربن با مبنای قیر مزو فاز، فیبر کربن با مبنای قیر ایزوتروپیک، فیبر کربن با مبنای الیاف ویسکوز ریون (ابریشم مصنوعی) و فیبر کربن با مبنای فاز گازی دسته بندی می‌گردند. در مجموع در این حالت الیاف کربن را می‌توان به دو دسته تقسیم کرد که عبارتند از: الیاف کربن با مبنای الیاف مصنوعی، که با نام شیمیایی پلی آکریلونیتریل (PAN) شناخته می‌شوند، مقاومت بسیار زیادی دارند (بیش از MPa 3700)؛ ولی قیمت این نوع از CFRP گران است. فیبر کربن با مبنای قیری، که از تقطیر زغال سنگ به دست می‌آیند و از الیاف کربن PAN ارزان‌تر هستند؛ ولی مقاومت و مدول الاستیسیته کم‌تری دارند.
CFRP بر اساس دمای نهایی عملیات حرارتی نیز به الیاف MH (دمای عملیات حرارتی بالاتر از ۲۰۰۰ درجه سلسیوس)؛ الیاف SH (دمای حدود ۱۵۰۰ درجه) و الیاف TH (دمای کمتر از ۱۰۰۰ درجه با استحکام پایین کاربرد)

مزیت‌های فیبر کربن و الیاف کربنی CFRP

  • وزن کم فیبر کربن
  • مقاومت کششی بالا فیبر کربن
  • ضریب الاستیک بالاتر نسبت به الیاف شیشه
  • ضریب انبساط گرمایی کم فیبر کربن که باعث ثابت ماندن طول فیبر کربن در دماهای مختلف می‌شود
  • مقاومت بالا فیبر کربن در برابر مواد خورنده
  • غیر قابل انفجار بودن فیبر کربن
  • استحکام فیبر مربن در برابر خستگی

کاربرد کامپوزیت CFRP و فیبر کربن

فیبر کربن در صنایع مختلف کاربردهای گوناگونی دارند که عبارتند از:
  • کاربرد الیاف کربن و فیبر کربن در صنعت ساختمان: مقاوم سازی ساختمان و تقویت سازه ها با کامپوزیت CFRP، ساخت صفحات، ورقها و لمینیت کربن، الیاف تقویت کننده بتن‌های مقاومت بالا، ساخت دیوارهای با مقاومت بالا و سبک کربنی، ساخت سازه های پس کشیده و پیش تنیده کربنی در سازه های بتنی، استفاده در جداره داخلی تونل ها.
  • کاربرد الیاف و فیبر کربن در صنعت خودرو: مخازن سوخت کربنی خودروها، ساخت سپرهای کربنی خودروها، شفت های انتقال نیرو، قطعات موتور، کمک فنر، ملحقات چرخ و جعبه فرمان، لنت ترمز،بدنه ماشین مسابقه، بدنه کشتی ها، فنرهای لول و…
  • کاربرد فیبر کربن در صنایع هوا فضا و هواپیما سازی: اجزای سازه ای ماهواره ها، سازه های داخلی هواپیماهای مسافرین اعم از پنل صندلی های کربنی، میزهای کربنی و سایر پوشش های کربنی، نوک هواپیماهای مافوق صوت، قطعات حساس موتور هواپیماها و …
  • کاربرد الیاف کربن در صنایع پزشکی: ساخت اجزای تجهیزات پزشکی کربنی، صندلی چرخدار کربنی، استخوان مصنوعی و انواع اجزای مصنوعی بدن و …
  • مقاومت بالا فیبر کربن در برابر مواد خورنده
  • غیر قابل انفجار بودن فیبر کربن
  • استحکام فیبر مربن در برابر خستگی

تولید فیبر کربن CFRP

 تولید فیبر کربن CFRP بر مبنای الیاف پلی اکریلونیتریل شامل سه فاز زیر می‌باشد:

فاز پایدارسازی اکسیداسیونی: در این مرحله الیاف اکریلیک همزمان با اعمال کشش تحت عملیات حرارتی اکسیداسیونی در محدوده دمایی ۲۰۰ تا ۳۰۰۰ درجه سلسیوس قرار می‌گیرد.
فاز کربونیزاسیون: پس از فاز پایدارسازی اکسیداسیون، الیاف بدون اعمال کشش در پیرامون دمای ۱۰۰۰ درجه سلسیوس در محیط خنثی برای مدت چند ساعت، تحت عملیات حرارتی کربونیزاسیون قرار می گیرند.
فاز گرافیتاسیون: با توجه به نوع الیاف کربن مورد نظر، از لحاظ ضریب ارتجاعی و اعمال این مرحله در محدوده دمایی ۳۰۰۰ – ۱۵۰۰ درجه سلسیوس، موجب بهبود درجه جهتگیری بلورهای کربنی در جهت محور الیاف و سایر ویژگی‌های مکانیکی می‌شود.
فرآیند تولید الیاف کربن CFRP بر مبنای سایر پیش‌زمینه‌ها نیز، مشابه مراحل فوق است. مشخصه‌های ساختاری الیاف کربن بیشتر با دستگاه‌های میکروسکوپ الکترونی و پراش پرتوی ایکس قابل بررسی است. در ساخت CFRP بر پایه پلی اکریلونیتریل، ساختار الیاف در طی عملیات پایدار سازی اکسیداسیونی و متعاقب آن کربونیزاسیون، از ساختار زنجیره‌ای خطی به ساختار صفحه ای تغییر می‌کند.
هر چه مقاومت کششی الیاف پیش زمینه بیشتر باشد، مشخصات کششی کامپوزیت CFRP بدست آمده بیشتر خواهد شد. هرگاه مرحله پایدارسازی به شکلی مناسب صورت گیرد، مقاومت کششی و ضریب ارتجاعی با کربونیزاسیون تحت کشش، به مقدار بسیار زیادی در محصول الیاف کربنی نهایی بالا می‌رود. در مجموع مقاومت نهایی و گسیختگی CFRP به نوع الیاف مبنای پیش زمینه، شرایط فرآیند، دمای عملیات حرارتی و وجود نواقص ساختاری در الیاف، مرتبط است.

ادامه مطلب

سازه FRP در چه مواردی کاربرد دارد؟

140725_panorama_moschee
برخی از موارد کاربرد FRP به اختصار در زیر شمرده است:
  • افزایش ظرفیت باربری و شکل پذیری ستون‌ها، تیرها، دال ها و اتصالات بتن آرمه
  • تقویت مخازن فولادی و بتنی
  • تقویت سازه‌های ساحلی و دریایی
  • تقویت سازه‌های مقاوم در برابر انفجار
  • تقویت تیر و ستون‌های چوبی
  • تقویت دودکش‌های بتن آرمه با مصالح بنایی
  • تقویت دیوارهای بتن آرمه
  • تقویت دیوار تونل‌ها
  • تقویت لوله‌های بتنی یا فولادی
  • تقویت دیوارهای آجری و مصالح سنتی
  • ساخت دیوارهای ساحلی
  • سقف‌های پشت بام‌های صنعتی
  • سیستم دال کف در محیط‌های خورنده شیمیایی
  • مرمت و تقویت سازه‌های مهمی چون بیمارستان‌ها آثار باستانی و غیره

ادامه مطلب

دوام کامپوزیت‌های FRP (بخش دوم)

1j2a5165

تأثیرات حرارتی – رطوبتی

درجه حرارت، نقش تعیین‌کننده‌ای در مکانیزم جذب آب کامپوزیت‌ها و تأثیرات متعاقب برگشت‌ناپذیر آن بازی می‌کند. درجه حرارت، بر توزیع آب، میزان آن و سرعت جذب آن، تأثیر می‌گذارد. با افزایش دما، مقدار و سرعت جذب آب سریعاً افزایش می‌یابد. تحقیقات نشان داده است که ضایعات ناشی از قرار دادن کامپوزیت، در آب جوش به مدت چند ساعت، معادل جداشدن اجزاء کامپوزیت، و ترک‌خوردگی آن در اثر قرار گرفتن آن در آب با دمای 50  به مدت 200 روز می‌باشد. در دمای معمولی اطاق، نمونه‌های کامپوزیت هیچگونه خرابی و آسیبی را بروز نداده‌اند. چنین مشاهداتی به توسعه تکنیک‌هایی برای آزمایشات تسریع شده پیرشدگی کامپوزیت‌ها منجر شده است.  

محیط قلیایی

در کاربرد کامپوزیت‌های با الیاف شیشه در محیط قلیایی، ضروری است که از الیاف شیشه با مقاومت بالای قلیایی استفاده نمود؛ زیرا محلول قلیایی با الیاف شیشه واکنش داده و ژل انبساطی سیلیکا تولید می‌کنند. این نکته به خصوص در کاربرد کامپوزیت‌های با الیاف شیشه به عنوان میلگردهای مسلح کننده بسیار حائز اهمیت می‌باشد. امروزه علاقه به استفاده از میلگردهای FRP از جنس شیشه در رویه‌های بتنی، به عنوان جانشین میلگردهای فولادی که با نمک‌های یخ زدا خورده می‌شوند، و نیز در سازه‌های در مجاورت آب افزایش یافته است. با این وجود در فرآیند هیدراسیون سیمان، محلول آب با قلیائیت بالا (pH>12) ایجاد می‌شود. این محلول قلیایی شدید، می‌تواند بر الیاف شیشه تأثیر گذاشته و دوام میلگردهای اف ار پی ساخته شده با الیاف شیشه را کاهش دهد. الیاف شیشه از جنس E-glass که اکثراً ارزان بوده و به کار گرفته می‌شوند، ممکن است مقاومت کافی در مقابل حمله قلیایی‌ها را نداشته باشند. استفاده از رزین وینیل استر با ایجاد یک مانع مؤثر، تا حدودی حمله قلیایی‌ها را کاهش می‌دهد. مقاومت در مقابل حمله قلیایی‌ها را می‌توان با طراحی عضو سازه‌ای برای تحمل سطح تنش‌های کمتر، بهبود داد. همچنین می‌توان برای بهبود دوام، از الیاف شیشه با مقاومت بسیار خوب در مقابل قلیا استفاده نمود. شایان ذکر است که FRP های ساخته شده از الیاف کربن و آرامید، مطلقاً در مقابل محیط‌های قلیایی از خود ضعفی نشان نمی‌دهند.  

تأثیر دمای پائین

تغییرات شدید دما بر کامپوزیت‌ها چندین اثر عمده به دنبال دارد. اکثر مواد با افزایش دما انبساط پیدا می‌کنند. در کامپوزیت‌های اف ار پی با ماتریس پلیمری، ضریب انبساط حرارتی ماتریس معمولاً در رتبه بالاتری از ضریب انبساط حرارتی الیاف قرار دارد. کاهش دما ناشی از سرد شدن در ضمن مرحله ساخت و یا شرایط عملکرد کامپوزیت در دمای پایین، باعث انقباض ماتریس خواهد شد. از طرفی انقباض ماتریس با مقاومت الیاف نسبتاً سخت که در مجاورت ماتریس قرار گرفته‌اند، روبرو می‌شود؛ که این مساله تنش‌های پس ماندی را در ریز ساختار ماده به‌جای می‌گذارد. بزرگی تنش‌های پس ماند با اختلاف دما در شرایط عمل‌‌آوری و شرایط عملکرد کامپوزیت متناسب خواهد بود. با این وجود، مگر در محیط فوق‌العاده سرد، تنش‌های پس‌ماند ایجاد شده چندان قابل توجه نخواهد بود. در جایی که تغییر دمای بسیار شدید وجود دارد (مثلاً نواحی نزدیک به قطب شمال و قطب جنوب) ممکن است تنش‌های پس‌ماند بزرگی ایجاد شود که منجر به ایجاد ریزترک در ماده می‌گردد. چنین ریزترکهایی به نوبه خود سختی کامپوزیت را کاهش داده و نفوذپذیری و ورود آب از طریق لایه مرزی ماتریس و الیاف را افزایش می‌دهند و بدین ترتیب در فرآیند تجزیه کامپوزیت شرکت می‌کنند.
تأثیر بسیار مهم دیگر درجه حرارت‌های پایین‌تر، تغییر متناظر در مقاومت و سختی ماتریس است. اکثر مواد رزین ماتریس، با سرد شدن، سخت‌تر و مقاوم‌تر می‌شوند. چنین تغییراتی بر وضعیت شکست اثر می‌گذارد. برای مثال، مشاهده شده است که شکست فشاری نمونه‌های استوانه‌ای کامپوزیت با قطر 38 میلیمتر در دمای 50 نسبت به شکست نمونه‌های مشابه در دمای اتاق با 6/17 درصد افزایش مقاومت فشاری و شکست ترد، همراه است. بدین ترتیب جذب انرژی قبل از شکست در دمای پایین‌تر نسبت به دمای اتاق، بیشتر خواهد بود. این جنبه ویژه از نظر آزاد شدن انرژی زیاد در لحظه شکست، در طراحی کامپوزیت‌هایی که تحت بارهای ضربه‌ای و در دمای پایین قرار می‌گیرند، باید در نظر گرفته شود.
 

تأثیرات سیکل‌های حرارتی در دمای پایین (یخ‌ زدن – ذوب شدن)

به جز در مواردی که کامپوزیت درصد قابل توجهی حفره‌های متصل به یکدیگر پر از آب داشته باشد، تأثیرات یخ‌ زدن و ذوب شدن در محدوده دمایی متداول (30 تا 20-) بر مقاومت، جزئی بوده و حائز اهمیت نیست. کامپوزیت‌های ساخته شده از الیاف‌های شیشه که به طور متداول در دسترس هستند، در حدود 4/0 درصد حفره دارند که اجازه یخ‌زدگی قابل توجهی را نداده و امکان هیچگونه آسیب جدی را فراهم نمی‌کند.
با این وجود، سیکل‌های حرارتی در دمای پایین اثرات دیگری را بر کامپوزیت‌ها می‌گذارد. تنش‌های پس‌ماند در مصالح کامپوزیت، بدلیل تفاوت‌های موجود در ضرائب انبساط حرارتی اجزاء موجود در ریز ساختار ماده، ایجاد می‌شود. در شرایط دمایی بسیار پایین، چنین تنش‌هایی می‌تواند منجر به تشکیل ریزترک‌ها در رزین ماتریس و یا در سطح مشترک رزین و الیاف شود. تغییرات رشد ریزترک در محدوده متداول دمای بهره‌برداری (از  30+  تا 20-)، معمولاً جزئی و یا حاشیه‌ای است؛ با این وجود تحت شرایط سیکل‌های حرارتی شدید، مثلاً بین 60+ تا 60- ، ریزترک‌ها امکان رشد و بهم پیوستن پیدا کرده که منجر به تشکیل ترک در ماتریس و انتشار آن در ماتریس و یا در اطراف سطح مشترک ماتریس و الیاف می‌شود. چنین ترک‌هایی تحت سیکل‌های حرارتی طولانی مدت، از نظر تعداد و اندازه رشد کرده که می‌تواند منجر به زوال سختی و یا زوال سایر خواص وابسته به ماتریس گردد.
همچنین مشاهده شده است که در دمای بسیار پایین، مقاومت کششی کلیه کامپوزیت‌های پلیمری در جهت الیاف، تمایل به کاهش دارد؛ اگر چه مقاومت‌های کششی در سایر جهات از جمله در جهت متعامد، افزایش می‌یابد. چنین نتایجی با سخت شدن ماتریس پلیمری در دمای پایین توجیه می‌شود. از طرفی سیکل‌های حرارتی بین دمای حداکثر و حداقل در زمان طولانی، زوال مقاومت و سختی در کلیه جهات را در پی دارد. چنین تغییراتی در ویژگی و ساختار کامپوزیت ها برای طراحی سازه‌ای در مناطق سرد، مهم تلقی می‌شوند.

تأثیر تشعشع امواج ماوراء بنفش (UV)

تأثیر نور ماوراء بنفش بر ترکیبات پلیمری کاملاً شناخته شده است. تحت تابش طولانی مدت نور خورشید، ممکن است ماتریس سخت و یا بی‌رنگ شود.  این مساله را عموماً می‌توان با بکارگیری یک پوشش مقاوم در مقابل اشعه ماوراء بنفش بر کامپوزیت، برطرف نمود. در همین ارتباط از جمله مسائل بسیار قابل توجه، زوال الیاف پلیمری مسلح کننده نظیر آرامید است. به عنوان مثال برای آرامید ساخته شده از الیاف نازک پس از پنج هفته قرار گرفتن در نور آفتاب فلوریدا، 50 درصد افت مقاومت گزارش شده است. با این وجود این اثر معمولاً سطحی است؛ بنابراین در کامپوزیت‌های ضخیم‌تر، تأثیر این زوال بر خصوصیات سازه‌ای جزئی است. در مواردی که خواص سطحی نیز مهم تلقی شوند، لازم است ملاحظاتی را جهت کاهش ترک‌خوردگی سطحی تحت اشعه خورشید، منظور نمود.

ادامه مطلب

دوام کامپوزیت‌های FRP (بخش اول)

new11
 

عوامل اثر گذار بر دوام الیاف FRP عبارتند از:

  • تغییرات شیمیایی یا فیزیکی ماتریس پلیمر
  • از دست رفتن چسبندگی بین الیاف و ماتریس
  • کاهش مقاومت و سختی الیاف
محیط نقش کاملاً تعیین کننده‌ای در تغییر خواص FRPها دارد. ماتریس و الیاف ممکن است با رطوبت، درجه حرارت، نور خورشید و مشخصأ تشعشعات ماوراء بنفش (UV)، ازن و نیز حضور بعضی از مواد شیمیایی تجزیه کننده نظیر نمک‌ها و قلیا‌ها تحت ثأثیر قرار گیرند. همچنین تغییرات تکراری دما ممکن است به صورت سیکل‌های یخ‌زدن و ذوب شدن، تغییراتی را در ماتریس و الیاف FRP ایجاد کند. از طرفی تحت شرایط بار‌گذاری مکانیکی، بارهای تکراری ممکن است باعث خستگی (Fatigue) شوند. همچنین بارهای وارده در طول زمان مشخص به صورت ثابت، ممکن است مساله خزش (Creep) را به دنبال داشته باشند. مجموعه‌ای از تمام مسائل مطرح شده در بالا، دوام کامپوزیت‌های FRP را تحت تأثیر قرار می‌دهند.  

پیر شدگی فیزیکی ماتریس پلیمر

نقش ماتریس پلیمر و تغییرات آن یکی از جنبه‌های مهمی است که در مساله دوام کامپوزیت‌ها باید در نظر گرفته شود. نقش اولیه ماتریس در کامپوزیت انتقال تنش بین الیاف، محافظت از سطح الیاف در مقابل سائیدگی مکانیکی و ایجاد مانعی در مقابل محیط نامناسب است. همچنین ماتریس نقش به سزائی در انتقال تنش برشی در صفحه کامپوزیت ایفا می‌کند. بنابر این چنانچه ماتریس پلیمر خواص خود را با زمان تغییر دهد؛ باید مورد توجه خاص قرار گیرد. برای کلیه پلیمرها کاملاً طبیعی است که تغییر فوق‌العاده آهسته‌ای در ساختار شیمیایی (مولکولی) خود داشته باشند. این تغییر با محیط و عمدتاً با درجه حرارت و رطوبت کنترل می‌شود. این پروسه پیر‌شدگی (Aging) نام دارد. تأثیرات پیر شدگی در اکثر کامپوزیت‌های ترموست متداول، در مقایسه با کامپوزیت‌های ترموپلاستیک، خفیف‌تر است. در اثر پیر‌شدگی فیزیکی، بعضی از پلیمرها ممکن است سخت‌تر و ترد‌تر شوند؛ نتیجه این مساله تأثیر بر خواص غالب ماتریس از جمله رفتار برشی کامپوزیت خواهد بود. با این وجود در اکثر موارد این تأثیرات بحرانی نیست؛ زیرا نهایتاً روند انتقال بار اصلی از طریق الیاف رخ داده و تأثیرات پیر‌شدگی بر الیاف فوق‌العاده جزئی است.  

تأثیر رطوبت بر FRP

بسیاری از کامپوزیت‌های با ماتریس پلیمری در مجاورت هوای مرطوب و یا محیط‌های مرطوب، با جذب سطحی سریع رطوبت و پخش آن، رطوبت را به خود می‌گیرند. معمولاً درصد رطوبت ابتدا با گذشت زمان افزایش یافته و نهایتاً پس از چندین روز تماس با محیط مرطوب، به نقطه اشباع (تعادل) می‌رسد. زمان رسیدن کامپوزیت به نقطه اشباع به ضخامت کامپوزیت و میزان رطوبت محیط بستگی دارد. خشک کردن کامپوزیت می‌تواند این روند را معکوس کند، اما ممکن است منجر به حصول کامل خواص اولیه نگردد. جذب آب به وسیله کامپوزیت از قانون عمومی انتشار فیک (Fick’s Law) تبعیت کرده و با جذر زمان متناسب است. از طرفی سرعت دقیق جذب رطوبت به عواملی همچون میزان خلل و فرج، نوع الیاف، نوع رزین، جهت و ساختار الیاف، درجه حرارت، سطح تنش وارده، و حضور ریزترک‌ها بستگی دارد. در ادامه تأثیر رطوبت بر اجزای کامپوزیت را مورد بحث قرار می‌دهیم.  

تأثیر رطوبت بر ماتریس پلیمری

جذب آب توسط رزین ممکن است در مواردی برخی از خصوصیات رزین را تغییر دهد. چنین تغییراتی عمدتاً در دمای بالای 120 درجه ممکن است اتفاق بیفتد و در اثر آن سختی کامپوزیت به شدت کاهش یابد؛ اگر چه چنین وضعیتی عمدتاً در مصارف کامپوزیت‌ها در مهندسی عمران و به خصوص در سازه‌های در مجاورت آب، کمتر پیش می‌آید و مورد توجه نیست. از طرفی جذب رطوبت یک تأثیر سودمند نیز بر کامپوزیت دارد؛ جذب رطوبت باعث تورم رزین شده که این مساله به نوبه خود تنش‌های پس‌ماند بین ماتریس و الیاف را که در اثر انقباض ضمن عمل‌آوری کامپوزیت ایجاد شده، کاهش می‌دهد. این مساله باعث آزاد شدن تنش‌های بین ماتریس و الیاف شده و ظرفیت باربری را افزایش می‌دهد. از طرفی گزارش شده است که در کامپوزیت‌هایی که به صورت نامناسب ساخته شده‌اند، در اثر وجود حفره‌ در سطح بین الیاف و ماتریس و یا در لایه‌های کامپوزیت، نفوذ آب در داخل حفره‌ها و یا در سطح مشترک الیاف و ماتریس ممکن است به سیلان رزین منجر شود. این مساله را می‌توان با انتخاب مناسب مواد رزین و یا آماده‌سازی صحیح سطح الیاف‌ و نیز بهبود تکنیک‌های ساخت، حذف نمود.  

تأثیر رطوبت بر الیاف‌

اعتقاد عمومی بر آن است که الیاف شیشه چنانچه به صورت طولانی مدت در کنار آب قرار گیرند، آسیب می‌بینند. دلیل این مساله آن است که شیشه از سیلیکا ساخته شده که در آن اکسیدهای فلزات قلیایی منتشر شده‌اند. اکسیدهای فلزات قلیایی هم جاذب آب بوده و هم قابل هیدرولیز هستند. با این وجود، در اکثر موارد مصرف در مهندسی عمران، از E-glass و S-glass استفاده می‌شود که فقط مقادیر کمی از اکسیدهای فلزات قلیایی را داشته و بنابراین در مقابل خطرات ناشی از تماس با آب، مقاوم هستند. در هر حال کامپوزیت‌های ساخته شده از الیاف شیشه باید به خوبی ساخته شده باشند، به‌صورتی‌که از نفوذ آب به مقدار زیاد جلوگیری ‌کنند؛ زیرا حضور آب در سطح الیاف شیشه انرژی سطحی آنها را کاهش می‌دهد که می‌تواند رشد ترک‌خوردگی را افزایش دهد. از طرفی الیاف آرامید نیز می‌توانند مقادیر قابل توجهی از آب را جذب کنند که منجر به باد کردن و تورم آنها می‌شود. با این وجود اکثر الیاف با پوششی محافظت می‌شوند، که پیوستگی خوب با ماتریس داشته و نیز حفاظت از جذب آب را به همراه دارد. لازم به ذکر است که تحقیقات متعدد، نشان می‌دهد که رطوبت هیچگونه تأثیرات سوء شناخته‌شده‌ای را بر الیاف کربن به دنبال ندارد.  

رفتار عمومی کامپوزیت‌های اشباع شده با آب

کامپوزیت‌های با ‌آب اشباع شده معمولاً کمی افزایش شکل‌پذیری (Ductility) در اثر نرم‌شدگی (Softening) ماتریس از خود نشان می‌دهند. این مساله را می‌توان یک جنبه سودمند از جذب آب در کامپوزیت‌های پلیمری بر‌شمرد. همچنین افت محدود مقاومت و مدول الاستیسیته می‌تواند در کامپوزیت‌های با آب اشباع شده اتفاق بیفتد. چنین تغییراتی معمولاً برگشت‌پذیر بوده و بنابر‌این به محض خشک شدن کامپوزیت‌، ممکن است اثر خواص از دست رفته مجدداً جبران شود. شایان توجه است که افزایش فشار هیدرواستاتیک (مثلاً در مواردی که کامپوزیت‌ها در مصارف زیر آب و یا در کف دریا به کار می‌روند)، لزوماً به جذب آب بیشتر توسط کامپوزیت و افت خواص مکانیکی آن منجر نمی‌شود. بدین ترتیب انتظار می‌رود که اکثر سازه‌های پلیمری زیر‌ آب، دوام بالایی داشته باشند.  در حقیقت، تحت فشار هیدرواستاتیک، جذب آب به دلیل بسته شدن ریز‌ترک‌ها و ضایعات بین سطحی، کمی کاهش می‌یابد. لازم به ذکر است که جذب آب بر خواص عایق بودن کامپوزیت‌ها اثر می‌گذارد. حضور آب آزاد در ریزترک‌ها می‌تواند خاصیت عایق بودن کامپوزیت را به شدت کاهش دهد.

ادامه مطلب

روش‌های تولید کامپوزیت FRP

1

روش اول: بافتن رشته‌ها به هم یا Filament winding

  • الیاف یا رشته‌های پیوسته به صورت نوارهای موازی به دور سیلندر پیچانده شده و رشته‌های فیبر به دور آن تابیده می‌شود. در این حین ماتریس رزین پلی استروینیل استر یا اپوکسی به درون سیلندر دوار دمیده شده و با فیبرها ترکیب می‌شود تمامی این فرایند برای بدست آمدن FRP با کیفیت مناسب با کامپیوتر کنترل می‌شود.
  • موارد مصرف FRP تولیدی به این روش در :
    • لوله سازی
    • ساخت لوله‌های تحت پیچش
    • بدنه وجداره موشک
    • بطری‌ها و شیشه‌های تحت فشار
    • تانکهای ذخیره
    • فیوز تأخیری هواپیما و… می‌باشد.

روش دوم: فرایند پالتروژن (Pultrusion)

در این روش لمینیت‌ها یا ورق‌های پوششی با مقطع عرضی و طول معین ساخته می‌شود. در حین کشیدن نوار فیبر، ماتریس که معمولاً پلی استر یا وینیل استر می‌باشد با گرمای الکتریکی به کمک روغن داغ به فیبر اضافه می‌شود و اتاقک پیش گرمایشی فرکانس رادیویی برای کنترل ضخامت در زمان عمل آوری وجود دارد.  

روش سوم: روند تولید از طریق فرآیند فشرده سازی در خلأ

در این روش وزن هوای بین لایه‌های FRP مانع از تشکیل آن می‌گردد بنابراین بر اثر پرس و فشار اعمالی بایستی هوای محبوس خارج شود تا ورق پوشی FRP یا لمینیت شکل گیرد. یک یا چند لایه با ضخامت مختلف روی فیلم یا غشا قابل گسترش قرار داده شده، سپس تحت پرس و فشار قرار می‌گیرند تا هوای بین لمینیت خارج شده و ماتریس رزین به یکی از روش‌های موجود حرارت داده شده و به لایه فیبر تزریق می‌شود.  

ادامه مطلب

سازه FRP چیست؟

u-boot-design-terms-
FRP (اف ار پی) در لغت مخفف کلمه Fiber Reinforced Polymer به معنی پلیمرهای تقویت شده با فیبر است. FRP (اف آر پی) از دو جزء ماتریس (رزین FRP) و فیبر (الیاف FRP) تشکیل می‌شود و کاربردهای متفاوتی در صنایع مختلف و ساختمان دارد. ببیشترین کاربرد این مصالح در مقاوم سازی سازه‌ها، جهت ترمیم، تقویت و مقاوم سازی ساختمان‌های بتنی بوده و در صنعت کامپوزیت جهت ساخت قطعات صنایع مختلف است. الیاف FRP با قرار گرفتن و نصب بر روی سطوح بتنی از قبیل دال‌ها، تیرها، ستون‌ها، دیوارهای بتنی و فونداسیون بتنی می‌تواند باعث افزایش مقاومت بتن شوند. همچنین این الیاف می‌تواند در ساختمان‌هایی با کاربری مسکونی، تجاری، اداری، صنعتی، تکیه‌گاه ماشین آلات و تاسیسات سنگین و همچنین سازه‌های آبی و دریایی مانند سد و کانال نیز کاربرد داشته باشند. علاوه بر این از الیاف FRP می‌توان در مقاوم‌سازی زیرساخت‌های مهندسی از قبیل پل‌های جاده‌ای و ریلی، مخازن آب و مواد شیمیایی، سیلوها و برج‌های خنک کننده نیز استفاده کرد.‏
به صورت کلی اف ار پی ترکیبی از دو ماده است. بخش اول آن ماتریس بوده و جز دیگر آن الیاف است. ماتریس خود از برخی مواد شیمیایی مانند رزین‌های اپوکسی و پلی استر تشکیل شده است. این مواد جهت کاهش قیمت  تمام شده و بهبود خواص مکانیکی و شیمیایی دارای فیلرها و افزودنی‌هایی هستند. نقش الیاف و فیبر، تامین مقاومت مکانیکی کافی در FRP است. در حالی که ماتریس نقش باربری مکانیکی ندارد و تنها باید از الیاف در مقابل خوردگی، عوامل محیطی و آسیب دیدن محافظت نماید. همچنین انتقال بار در FRP به کمک ماتریس و از طریق انتقال نیروی برشی بین فیبرها صورت می‌پذیرد. از دیگر کاربردهای ماتریس، کنترل کمانش موضعی الیاف تحت فشار است. بیشتر حجم FRP را الیاف تشکیل می‌دهند. عواملی مختلفی در بهره‌وری الیاف FRP تاثیر گذار هستند. از جمله این عوامل می‌توان به موارد زیر اشاره نمود:‏
  • نوع الیاف FRP
  • درصد مقدار الیاف موجود در FRP
  • نحوه قرارگیری الیاف FRP
  • ضریب انتقال حرارت
این عوامل در مقاومت کششی، خمشی، برشی، خستگی و مقاومت در برابر الکتریسیته بسیار موثر هستند. همچنین این عوامل در میزان قیمت تمام شده محصول نیز بسیار پر اهمیت بوده و بر خرید و فروش آن در مسائل اقتصادی تاثیر گذار هستند.

ورقه‌های FRP

ورقه های اف ار پی، ورقه های با ضخامت چند میلیمتر از جنس کامپوزیت هستند. این ورقه ها یا لمینیت ها با چسب های مستحکم و مناسب به سطح بتن چسبانده می شوند. از ورقه‌های FRP جهت تعمیر و تقویت سازه‌های آسیب دیده (ناشی از زلزله و یا ناشی از خوردگی آب های یون دار) استفاده می شود. لمینیت FRP از لحاظ شکل پذیری می‌تواند به صورت صفحات منعطف و سخت باشد. صفحات FRP منعطف خاصیت شکل پذیری بالایی دارند و می‌توانند در شعاع های کم خم شوند. صفحه های سفت در ضخامت های زیاد تولید می شوند و بر خلاف سایر ورقه ها، شکل پذیر نیستند و در عرض‌های مختلف یافت می‌شوند.
همان طور که اشاره شد الیاف FRP  مصالحی پارچه ای هستند که  فیبر های آن در یک جهت یا دو جهت قرار دارند. جنس فیبرها می‌تواند از جنس کربن و یا شیشه باشد که الیاف بافته شده از آن‌ها به الیاف شیشه GFRP و الیاف کربن CFRP معروف هستند. از روی هم گذاشتن چند لایه الیاف FRP و آغشته کردن آن‌ها به رزین و فشرده کردن آن‌ها برای رسیدن به مقاومت و ضخامت‌های مورد نیاز، ورقه‌های FRP تشکیل می‌شوند. ورقه های FRP با چسب اپوکسی به سطوح مورد نظر بتنی و فولادی می چسبند و باعث افزایش مقاومت المان‌های باربر می‌شوند. از ورقه‌های FRP در اکثر مواقع برای مقاوم سازی و به‌سازی ساختمان‌ها در پروژه‌های مقاوم سازی و به‌سازی لرزه ای سازه‌ها استفاده می‌شود.

کابل، نوار، تاندون‌های پیش تنیدگی FRP

کابل‌های FRP محصولات شبیه میله‌‌های FRP، ولی به صورت انعطاف پذیر هستند که در سازه‌های کابلی و بتنی پیش‌ تنیده در محیط‌های دریایی و خورنده کاربرد فرآوان دارند. این محصولات در اجزای پیش تنیده در مجاورت آب نیز به کار گرفته می‌شوند.

میل‌گردهای FRP

فولادها به طور مختصر در مقابل خوردگی به وسیله محیط قلیایی بتن محافظت می‌شوند اما خیلی از سازه هایی که در محیط های مهاجم از قبیل سازه های دریایی، پل‌ها و پارکینگ‌ها که در معرض عوامل مهاجم قرار می‌گیرند ترکیب رطوبت، افزایش دما و محیط کلریدی،خواص  قلیایی بتن را کاهش می دهد و سبب خوردگی فولادها می‌شود. به همین خاطر امروزه از میلگردهای ساخته شده با مواد پلیمری FRP در این سازه ها استفاده می کنند. به دلیل اینکه میلگردهای اف ار پی برای یک رفتار غیر شکل‌پذیر می باشند لذا موارد استفاده این میلگردها محدود به سازه‌های می‌شود که مهمترین مشکل آنها خوردگی یا مشکلات الکترومغناطیسی می‌باشد. میلگردهای فولادی دارای رفتاری تقریباً همسانگرد می‌باشند ولی میلگردهای FRP به بتن تاثیر می‌گذارد. مصالح FRP برخلاف مصالح فولادی رفتار الاستیک خطی از خود نشان می‌دهند.

شبکه کامپوزیتی FRP

شبکه کامپوزیتی FRP از دیگر محصولات کامپوزیتی هستند که از برخورد میله‌های اف ار پی  در دو جهت و یا سه جهت ایجاد می‌شوند. نمونه ای از این محصولات شبکه کامپوزیتی Nefmac است که از فیبرهای کربن، شیشه ای و یا آرمید و رزین اپوکسی، وینیل استر و یا پلی استر تولید می‌شود و برای مسلح کردن بتن مناسب است. گریتینگ FRP نیز که به روش سیستم قالبی (Modled) حرارتی تولید می‌شود در صنایع و اکثر کارخانجات دارای مواد خورنده کاربرد دارند.

پروفیل‌های ساختمانی FRP

مصالح FRP همچنین در شکل پروفیل های ساختمانی به صورت I شکل، T شکل، نبشی و ناودانی و به روش پالتروژن (Pultrusion) تولید می‌شوند. در این روش دسته‌هایی از فیبر یا نخ یا رشته های FRP پس از آغشته شدن با رزین از یک قالب عبور کرده و در کنار هم قرار گرفته و یک پروفیل دارای مقطع ثابت را به وجود می‌آورند. از عمده‌ترین مزایای روش پالتروژن چند منظوره بودن آن و کاربردهای گوناگون آن در صنایع مختلف است. به عبارتی صرفاً با تغییر قالب دستگاه می‌توان علاوه بر محصولاتی که در صنعت ساختمان کاربرد دارد، همانند انواع میلگردها و آرماتورهای اف ار پی، محصولات گوناگون دیگری در حوزه‌های مختلف از جمله تسمه‌های ماشین نساجی، ریل ها، محافظ اتوبان ها یا گارد ریل، چارچوب پنجره‌ها و درها، تیرهای با مقطع I شکل، نبشی‌ها و غیره تولید نمود. عمر مفید و دوام محصولات پالتروژنی بسیار بالاست و سرعت تولید یک محصول پالتروژنی نیز نسبتاً زیاد است. از نظر قیمت نیز با وجود اینکه یک تیر پالتروژنی قیمت ظاهری بیشتری نسبت به نمونه مشابه آهنی دارد؛ ویژگی هایی مانند مقاومت بالا در برابر خوردگی و زلزله و دوام آن می‌تواند توجیه‌ کننده قیمت اولیه بالای آن باشد. در مصارف عمومی مانند ساخت سازه‌ها اگر نیاز به مقاومت در برابر خوردگی و زلزله وجود داشته باشد، استفاده از تیرهای پالتروژنی می‌تواند توجیه اقتصادی نیز داشته باشد. لذا محصولات پروفیل FRP می‌توانند جایگزین بسیار مناسبی برای قطعات و سازه‌های فولادی تلقی شوند.

ادامه مطلب

برای اجرای پروژه خود سوال یا ابهامی دارید؟ برای مشاوره رایگان با ما تماس بگیرید.

آدرس  دفتر مرکزی

آدرس
دفتر مرکزی

تهران، محله مهران، خ شهید جواهریان جنوبی، پلاک ۲۹، ساختمان ۱۶۳، واحد ۱۴

تلفن  دفتر مرکزی

تلفن
دفتر مرکزی

شماره همراه تلگرام - واتزاپ

شماره همراه
تلگرام - واتزاپ

اخبار و تازه‌ها

قیمت روز عرشه فولادی
آتی‌ساخت عرشه فولادی قیمت سقف عرشه فولادی

قیمت روز عرشه فولادی

قیمت روز عرشه فولادی جدول زیر، برآورد قیمت اجرای یک متر مربع سقف عرشه فولادی به تفکیک و به...

ادامه . . .

بررسی و مقایسه سقف‌های عرشه فولادی و تیرچه بلوک
آتی‌ساخت سقف تیرچه بلوک سقف عرشه فولادی قیمت سقف عرشه فولادی

بررسی و مقایسه سقف‌های عرشه فولادی و تیرچه بلوک

بررسی و مقایسه سقف‌های عرشه فولادی و تیرچه بلوک سقف‌های عرشه فولادی و تیرچه بلوک، از رایج‌ترین...

ادامه . . .

اجزاء سقف‌های عرشه فولادی
آتی‌ساخت آرماتور اجزاء سقف عرشه فولادی بتن سقف عرشه فولادی گل‌میخ

اجزاء سقف‌های عرشه فولادی

اجزاء سقف‌های عرشه فولادی سقف‌ عرشه فولادی از رایج‌ترین انواع سقف‌های مورد استفاده در کشور است...

ادامه . . .